Machine learning - implementation en python avec scikit-learn (2e edition)
Mathivet virginie
Ce livre présente à des personnes non data scientists, et sans connaissances particulières en mathématiques, la méthodologie du machine learning, ses concepts, ses principaux algorithmes et l'implémentation de ceux-ci en python avec scikit-learn.il commence par une présentation du machine learning puis de la méthode crisp où chaque phase est détaillée avec ses différentes étapes. les premiers chapitres s'intéressent donc aux phases de business understanding (compréhension métier), data understanding (ou compréhension des données) et de data preparation (préparation des données). dans ces chapitres sont présentés des analyses statistiques de datasets, que cela soit sous forme numérique ou graphique ainsi que les principales techniques utilisées pour la préparation des données, avec leur rôle et des conseils sur leur utilisationensuite, plusieurs chapitres sont dédiés chacun à une tâche de machine learning : la classification, la régression, avec le cas particulier de la prédiction, ainsi que le clustering et plus globalement l'apprentissage non supervisé. pour chaque tâche qui est présentée sont successivement détaillés les critères d'évaluation, les concepts derrière les principaux algorithmes puis leur implémentation avec scikit-learnpour illustrer les différents chapitres, les techniques et algorithmes présentés sont appliqués sur des datasets souvent utilisés : iris (classification de fleurs), boston (prévision de prix de vente d'appartements) et titanic (prévision de la chance de survie des passagers du bateau). le code python est commenté et disponible en téléchargement (sous la forme de notebooks jupyter) sur le site www.editions-eni.fr.
Similar publications
Where to find us?
31000 Toulouse
Schedules
Le lundi de 13h30 à 19h
Du mardi au vendredi de 9h à 19h
Le samedi de 9h30 à 19h
Contact
info@librairiedeslois.com
0561225197